Авторы сопоставили активность опсиновых генов с экологическими характеристиками изученных видов, а именно с питанием и типом местообитания. Оказалось, что только у одного гена («ультрафиолетового») активность тесно связана с типом питания. Среди рыб озера Малави наибольшая активность «ультрафиолетового» гена характерна для видов, питающихся фито- и зоопланктоном или водорослями, наименьшая — для хищников, питающихся другими рыбами или донными беспозвоночными. Эта особенность явно имеет адаптивный (приспособительный) характер, потому что, как было показано ранее, способность воспринимать свет в ультрафиолетовом диапазоне повышает эффективность питания у рыб–планктофагов. Все эти типы питания встречаются и у цихлид озера Виктория, однако «ультрафиолетовый» ген ни у кого из них не работает — ни у планктофагов, ни у хищников, потому что мутная вода Виктории непрозрачна для ультрафиолета.
В озере Виктория, как выяснилось, спектр активности опсиновых генов связан с мутностью воды в конкретных местообитаниях, а также с глубиной, на которой предпочитают жить представители данного вида. Чем мутнее вода и чем глубже обитают рыбы, тем слабее у них работает «фиолетовый» опсиновый ген, самый коротковолновый после «ультрафиолетового». В озере Малави четкой связи между локальной прозрачностью воды или глубиной обитания и экспрессией опсиновых генов обнаружить не удалось.
Авторы также изучили межвидовые различия в аминокислотных последовательностях опсинов, влияющие на их чувствительность к волнам разной длины. Оказалось, что эти различия распределены между шестью опсинами очень неравномерно. В озере Малави самым вариабельным оказался «ультрафиолетовый» опсин, на втором месте — «красный». В озере Виктория наибольшая вариабельность аминокислот, влияющих на избирательность цветового восприятия, отмечена у «красного» опсина. Выявленные различия меняют оптимум восприятия красного опсина на 5–15 нм. У видов, обитающих на больших глубинах, где доступная цветовая гамма сильно смещена в длинноволновую сторону, туда же смещена и чувствительность красного опсина. Аминокислотные различия, очевидно, закрепились не случайно, а под действием отбора (об этом свидетельствует, в частности, отсутствие корреляции между числом значимых и «молчащих» нуклеотидных замен в шести опсиновых генах).
Таким образом, эволюция систем цветового восприятия у африканских цихлид шла параллельно двумя путями: за счет изменения активности опсиновых генов и за счет изменения их кодирующих участков. Первым способом достигалась тонкая подстройка восприятия под особенности среды и образа жизни. Второй способ помогал менять границы воспринимаемого спектра — именно поэтому изменение аминокислотных последовательностей происходило преимущественно у двух «крайних» опсинов, ультрафиолетового и красного. В прозрачном озере Малави на эволюцию цветового зрения в большей степени влиял тип питания, в Виктории — спектральные характеристики доступного рыбам света, зависящие от мутности воды и глубины обитания.
Авторы подчеркивают, что столь высокое разнообразие систем цветового восприятия в пределах одной группы близкородственных родов и видов — случай уникальный, не имеющий аналогов у других позвоночных. Самое удивительное, что все эти контрастные различия развились очень быстро: озеру Малави 1–2 млн лет, озеру Виктория — не более 120 тысяч лет. Наблюдаемые различия в уровнях активности опсиновых генов у цихлид смещают оптимум цветового восприятия очень сильно — до 100 нм. Разные виды африканских цихлид действительно видят мир в разных красках. Это может влиять как на их поведение, так и на эволюцию других признаков — прежде всего их собственной окраски. Давно известно, что африканские цихлиды — самая разнообразная по окраске группа пресноводных рыб (не случайно их так любят аквариумисты). Теперь мы узнали, что и цветовое зрение у этих рыб тоже удивительно разнообразно.
Ранее было показано, что видообразование у цихлид в озере Виктория происходит под действием так называемого «сенсорного смещения» или «сенсорного драйва» (Seehausen et al. Speciation through sensory drive in cichlid fish // Nature. 2008. V. 455. P. 620–626). Так называют влияние особенностей органов чувств животных на направленность полового отбора. Например, если данный вид лучше всего видит красные объекты, самцам выгодно быть красными, чтобы привлекать внимание самок. Им выгодно также красоваться перед самками в таких местах (на такой глубине), где их краснота смотрится наиболее эффектно, более заметна для самок. Если интенсивность окраски у самца в какой-то мере отражает его здоровье и качество генов, то есть является «индикатором приспособленности» (а это обычно так и бывает), то самкам выгодно научиться еще лучше различать оттенки красного. Самки с наилучшей способностью различать эти оттенки выберут лучших самцов и оставят больше потомства, причем их сыновья унаследуют «удачный» брачный наряд от отца, а дочери — пристрастие к таким нарядам от матери.
В результате эволюция под действием полового отбора может приобрести черты автокаталитического процесса: рост интенсивности окраски будет стимулировать рост избирательности самок, и наоборот (см.: Fisherian runaway). Это может завести вид очень далеко по пути развития яркого наряда и изощренной системы цветового восприятия. Вряд ли можно сомневаться, что практически всё наблюдаемое у африканских цихлид буйство красок возникло под действием полового отбора, ведь для выживания вся эта пестрота не имеет существенного значения.
Источник: Christopher M. Hofmann, Kelly E. O'Quin, N. Justin Marshall, Thomas W. Cronin, Ole Seehausen, Karen L. Carleton. The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity // PLoS Biology. V. 7(12): e1000266. Doi:10.1371/journal.pbio.1000266.
Взято с сайта:http://elementy.ru/news